زمرة دورية

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 17:06، 7 أغسطس 2023 (نقل عبد الجليل 09 صفحة زمرة دائرية إلى زمرة دورية: حسب المصدر في المقالة). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث


في نظرية الزمر، يُقال عن زمرة أنها دوريّة[1] (بالإنجليزية: Cyclic group)‏ إذا كان من الممكن توليدها عن طريق عنصر وحيد، فإذا كانت الزمرة تحوي عنصراً a (ويسمى مولد الزمرة) وكانت العملية المعرفة عليها هي الجداء، فإن أي عنصر من هذه الزمرة يمكن كتابته قوةً للعنصر a، أما إذا كانت العملية المعرفة هي الجمع فإن جميع العناصر يجب أن تكون من مضاعفات العنصر a.[2]

تعريف

الجذور العقدية الست من الدرجة السادسة للوحدة تكون زمرة دائرية في إطار عملية الضرب. يعتبر z عنصرا بدائيا بينما z2 ليس كذلك لأن القوى الفردية ل z ليست قوى ل z2.

خصائص

تكون زمرة G ما دائرية إذا وجد عنصر g من G حيث كل عناصر الزمرة G تُكتب على شكل gn حيث n عدد صحيح.

أمثلة

تمثيل الزمر الدائرية

C1 C2 C3 C4 C5 C6 C7 C8

انظر أيضا

مراجع

  1. ^ Q108593221، ص. 155، QID:Q108593221
  2. ^ p. 126: "If G has two ends, the explicit structure of G is well known: G is an extension of a finite group by either the infinite cyclic group or the infinite dihedral group." نسخة محفوظة 26 مارس 2015 على موقع واي باك مشين.

انظر أيضا