وتر دائرة

من أرابيكا، الموسوعة الحرة
(بالتحويل من وتر الدائرة)
اذهب إلى التنقل اذهب إلى البحث
الضلع الأحمر BX والأسود AB يُعدّان وترَيْنِ في الدائرة. ويُسمَّى الوتَرُ المارُّ بنُقطةِ المركز M قطراً في الدائرة.

وَتَرُ الدائرةِ هو قطعة مستقيمة واصلةٌ بين نقطتين على الدائرة. يُسمّى أطولُ وترٍ في الدائرةِ قُطراً. بينما الخطُّ القاطع هو امتدادٌ لانهائيٌّ للوتر. يُعمّمُ تعريف الوَترُ ليشملَ أيّ منحنىً بإعادة صياغته على أنه قطعة مستقيمة واصلة بين نقطتين على منحنىً.

الخصائص والمبرهنات

طول الوتر

تُعطى صيغة طول الوتر بدلالة نصف قطر دائرته المحيطه وزاوية القوس الذي يحصرها:

|AB¯|=2Rsinα

:

مبرهنة — طول أي وتر داخل الدائرة لا يزيد عن طول القطر.

مبرهنة — أطوال أوتار الدائرة الواحدة تتساوى إذا وفقط إذا تساوت قياسات أقواسهما المتناظرة.

مبرهنة — مبرهنة: الوتر الأكبر يحصر قوساً ذا قياسٍ أكبر من قياس القوس الذي يحصره الوتر الأصغر. والعكس صحيح.

مبرهنة — مبرهنة: الوتر الأكبر يبعد بعداً عن مركز الدائرة أقل من بعد الوتر الأصغر.


عمق الوتر

يُعطى عُمْقُ الوتر بالصيغة: |OM¯|=Rcosα.

في حساب المثلثات

استخدمت الأوتار على نطاق واسع في التطور المبكر لحساب المثلثات. قام أول جدول مثلثي معروف، الذي أنتجه العالم اليوناني أبرخش، بجدولة قيم الوتر لكل 7.5 درجة. في القرن الثاني الميلادي، أنشأ بطليموس الإسكندري جدول الأوتار الأكثر شمولًا في كتابه «المجسطي» عن علم الفلك، مما أعطى قيمة الوتر للزوايا التي تتراوح من 1/2 درجة إلى 180 درجة بزيادات نصف درجة. كانت الدائرة قطرها 120، وأطوال الوتر دقيقة إلى رقمين ستينيين بعد الجزء الصحيح.[1]

تعرف دالة الوتر هندسيًا كما هو موضح في الصورة. وتر زاوية هو طول الوتر بين نقطتين على دائرة الوحدة ويقابل الزاوية المركزية. يجب أن تكون الزاوية θ واقعة في المجال 0 < θπ (بالراديان). يمكن أن تكون دالة الوتر مرتبطة بدالة الجيب الحديثة، عن طريق أخذ إحدى النقاط لتكون (1 , 0)، والنقطة الأخرى هي (cos θ , sin θ)، تحسب الوتر بتطبيق مبرهنة فيثاغورس:[1]

crdθ=(1cosθ)2+sin2θ=22cosθ=2sin(θ2).

تَستَخدم الخطوة الأخيرة صيغة نصف الزاوية. مثلما تم بناء حساب المثلثات الحديث على دالة الجيب، فقد تم حساب حساب المثلثات القديم على دالة الوتر. يُزعم أن أبرخش قد كتب كتابًا مؤلفًا من اثني عشر مجلدًا على الأوتار، تم فقدها جميعًا، لذا من المفترض أن يكون هناك الكثير معروف عنها. في الجدول أدناه (c هو طول الوتر و D هو قطر الدائرة)، يمكن إظهار دالة الوتر للتحقق من العديد من المتطابقات المشابهة للمتطابقات الحديثة المعروفة:

الاسم القائمة على الجيب القائمة على الوتر
فيثاغورية sin2θ+cos2θ=1 crd2θ+crd2(πθ)=4
نصف الزاوية sinθ2=±1cosθ2 crdθ2=±2crd(πθ)
عامد (a) c=2r2a2 c=D24a2
الزاوية (θ) c=2rsin(θ2) c=D2crdθ

توجد الدالة العكسية أيضًا:[2]

acrd(y)=2arcsin(y2).

انظر أيضًا

هوامش وملاحظات

  1. ^ لاحظ أن طول قطر الدائرة C(O,r)ثابت ويساوي 2rوأن أي وتر آخر لا يمثل قطراً فإن طوله أصغر من قطر الدائرة.

المراجع

  1. ^ أ ب Maor، Eli (1998)، Trigonometric Delights، Princeton University Press، ص. 25–27، ISBN:978-0-691-15820-4
  2. ^ Simpson، David G. (8 نوفمبر 2001). "AUXTRIG" (FORTRAN-90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. مؤرشف من الأصل في 2018-11-02. اطلع عليه بتاريخ 2015-10-26.