قاعدة لايبنتز للتكامل

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 14:31، 11 يونيو 2023 (مهمة: إضافة قالب {{بطاقة عامة}} (التفويض)). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)

قاعدة لايبنتز للتكامل هي قاعدة رياضياتية في حساب التفاضل والتكامل  سميت تيمنا بغوتفريد لايبنتز، والتي تقول أن كل تكامل على شاكلة:

قاعدة لايبنتز للتكامل

a(x)b(x)f(x,t)dt,

حيث أن  <a(x),b(x)< مشتقته  بالشكل التالي:

ddx(a(x)b(x)f(x,t)dt)=f(x,b(x))ddxb(x)f(x,a(x))ddxa(x)+a(x)b(x)xf(x,t)dt,

حيث آن المشتق الجزئي يدل على أن ما داخل التكامل يمكن الأخذ به عندما يكون المتغير f(x, t) x يعتبر في اتخاذ مشتق.[1] لاحظ أنه إذا كان كلا من a(x) و b(x) ثوابت، بمعنى أنّ a(x)a و b(x)b، فسنحصل على التعبير التّالي:

ddx(abf(x,t)dt)=abxf(x,t)dt.

حالة الأبعاد الثلاثة التي تعتمد على الزمن

 
الشكل 1: حقل متجه F(r, t) محددة في جميع أنحاء الفضاء, سطح Σ يحدها منحنى ∂Σ تتحرك مع سرعة v على حقل دمج.

ان قاعدة لايبنتز للأبعاد الثنائية هي:[2]

ddtΣ(t)F(r,t)dA=Σ(t)(Ft(r,t)+[F(r,t)]v)dAΣ(t)[v×F(r,t)]ds,

حيث أن:

F(r, t) هو حقل متجه في موقف المكاني r في الوقت t,
Σ هو سطح متنقل في مساحة ثلاثية يحدها منحنى مغلق ∂Σ ،
dA هو متجه عنصر من سطح Σ،
ds هو متجه عنصر من منحنى ∂Σ،
v هي سرعة الحركة من المنطقة Σ،
∇⋅ هو متجه الاختلاف،
× هو متجه عبر المنتج،
إن ضعف التكامل هي التكاملات السطحية على سطح Σ و خط متكامل على إحاطة منحنى ∂Σ.

الأبعاد العليا

يمكن تمديد قانون ليبنيز ليشمل تكاملات في أبعاد متعددة. تسمى في حالة البعدين والثلاثة بمجال ديناميات السوائل كما في نظرية رينولدز للنقل:

ddtD(t)F(x,t)dV=D(t)tF(x,t)dV+D(t)F(x,t)vbdΣ,

انظر أيضًا

المراجع

  1. ^ Protter، Murray H.؛ Morrey، Charles B., Jr. (1985). "Differentiation under the Integral Sign". Intermediate Calculus (ط. Second). Springer. ص. 421–426. ISBN:0-387-96058-9.{{استشهاد بكتاب}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  2. ^ Flanders، Harly (يونيو–يوليو 1973). "Differentiation under the integral sign" (PDF). الرياضيات الأمريكية الشهرية. ج. 80 ع. 6: 615–627. DOI:10.2307/2319163. JSTOR:2319163. مؤرشف من الأصل (PDF) في 2018-09-20.

مزيد من القراءة