هالة (فضاء)
هالة الشمس (بالإنجليزية: Corona) هي منطقة «جو» خفيفة ناصعة محيطة بالشمس، لا يمكن رؤيتها إلا في وقت الكسوف الكلي للشمس. وتمتد الهالة إلى نحو 1 - 3 من قطر الشمس خارجها وتمثل منطقة وسطية بين الشمس والفضاء الخارجي. ويستطيع العلماء قياس المنطقة الداخلية للهالة في جميع الأوقات بدون الانتظار حتى حدوث الكسوف، وذلك بوضع قطعة معدنية مستديرة صغيرة في التلسكوب تحجب الشمس نفسها كما يحدث في الكسوف.[1]
وترجع الصفات الطيفية غير العادية للهالة الشمسية إلى درجة حرارة العالية، مما دعا بعض علماء القرن التاسع عشر إلى الاعتقاد بتواجد عنصر غير معروف فيها أسموه كورونيوم. ثم بينت القياسات والبحوث العلمية بعد ذلك أن هذا الطيف الغريب يعود إلى الحديد شديد التأين (Fe-XIV)، والذي يتسبب في ارتفاع درجة الحرارة خارج الشمس في الهالة إلى 1 - 2 مليون درجة مئوية.[2]
هالة ساخنة
يقع الغلافان الشمسيان الغلاف اللوني والغلاف الضوئي أسفل من الهالة. وتتكون الهالة من غازات متأينة في حالة بلازما وتتميز الهالة بأن درجة حرارتها أعلى كثيرا من الغلافين الأسفل منها وتصل درجة حرارتها عدة ملايين كلفن. في حين يبلغ درجة حرارة سطح الشمس نحو 5780 درجة فقط. أسباب نشأة الهالة وآليات تكوّن درجة الحرارة العالية فيها لا تزال غير مفهومة تماما ويبحث فيها العلماء سواء بالمراصد الأرضية أو بمراصد ترسل على أقمار صناعية.[4]
ويتبوأ فرع الفيزياء الخاص «بفيزياء الشمس» أهمية خاصة لدى العلماء حيث يؤثر النشاط الشمسي وظهور البقع الشمسية تأثيرا مباشرا على الأحوال على الأرض وأحيانا تحدث عواصف شمسية تؤدي إلى إصابة الأرض بوابل من الجسيمات تتسبب في انقطاع التيار الكهربائي في بعض أنحاء العالم مثلما حدث في كندا في سبتمبر 2003، كما تهدد تلك الجسيمات السريعة صحة رواد الفضاء وأحيانا تفسد أجهزة الأقمار الصناعية. لهذا تهتم فيزياء الشمس بإرسال مراصد قريبة منها لدراستها، دراسة الهالة الشمسية ودراسة النشاط الشمسي.[5]
في أوقات النشاط الشمسي قد تمتد الهالة المرئية إلى عدة ملايين كيلومترات وبالتالي قد تبلغ 2 إلى 3 قطر شمسي فوق الغلاف الضوئي (سطح الشمس). وتظهر الهالة في هيئة إشعاعية إلى الخارج بسبب مغناطيسية الهالة وتتغير كل 11 سنة مع دورة النشاط الشمسي. وبسبب التشكيلات المختلفة للمجال المغناطيسي والتي توجد فيها البلازما، فإن الأشعة المرئية تظهر أثناء قمة النشاط الشمسي في جميع الاتجاهات حول الشمس بينما أثناء فترات الهدوء فيغلب وجود الهالة عبر الدائرة الاستوائية للشمس.[6]
تفسيرها
توجد عدة نماذج فيزيائية تفسّر تسخين الهالة الشمسية، حيث تصل درجة الحرارة فيها عدة ملايين درجة بينما لا تتعدى درجة حرارة سطح الشمس 5800 درجة. ومن تلك النماذج تشتت موجات البلازما (جسيمات أولية مشحونة) وتغيرات مستمرة في أشكال الحقول المغناطيسية على الشمس، وانتشار تصادمي لتيارات كهربائية، وتسخين من خلال موجات تصادمية وبعض التأثيرات الأخرى. وقد ساهمت في الحصول على تلك النتائج عدة أقمار صناعية قامت بالرصد، مثل «مرصد الشمس وغلافها» سوهو ومسبار تريس ومرصد شاندرا الفضائي للأشعة السينية والقمر الصناعي RHESSI. كما سوف يقوم «مسبار الشمس +» مسبار باركر أثناء وجوده في فلك حول الشمس على بعد نحو 4 أقطار من الشمس بقياسات في الهالة.[7]
يوجد تدرج شديد في درجة الحرارة في المنطقة التحتية من الهالة حيث تنخفض فيها الكثافة بالابتعاد عن سطح الشمس (أنظر الشكل). وخلال عدة مئات الكيلومترات فوق السطح ترتفع طاقة الحركة لجسيمات البلازما إلى نحو مليون درجة مئوية. وتتسبب درجة الحرارة العالية وبعض آليات التسارع إلى نشأة الريح الشمسية التي تنتشر في الفضاء. وينشأ تسارع الجسيمات المشحونة عن تواجدها في موجات أو أعاصير مغناطيسية شديدة تعمل على تسريع جسيمات البلازما المتكونة بصفة أساسية من بروتونات وإلكترونات.[8]
كما يرجع سبب تسخين الهالة إلى تلك الدرجات العالية كون كثافتها منخفضة جدا. وتمثل درجة حرارتها العالية ما يكتسبه أي غاز أو البلازما من طاقة حركة لجسيماته. فإذا وجد جسم صلب على نفس البعد من الشمس فستكون درجة حرارته أقل بكثير، حيث يحدث فيه توازن حراري مختلف تماما عن التوازن الحراري في غاز أو بلازما.
وتصف المعادلة التقريبية التالية شدة إشعاع الهالة كما يرجع سبب تسخين الهالة إلى تلك الدرجات العالية كون كثاقتها منخفضة جداً. وتمثل درجة حرارتها العالية ما يكتسبه أي غاز أو البلازما من طاقة حركة لجسيماته. فإذا وجد جسم صلب على نفس البعد من الشمس فستكون درجة حرارته أقل بكثير، حيث يحدث فيه توازن حراري مختلف تماما عن التوازن الحراري في غاز أو بلازما.[9]
وتصف المعادلة التقريبية التالية شدة إشعاع الهالة (Lit.: November & Koutchmy, 1996) خارج الشمس بالنسبة لدرجة إشعاع قرص الشمس نفسه ابتداء من مركز فرص الشمس:
حيث هي مسافة بدون وحدات من مركز الشمس، وهي تساوي هنا عند حافة الشمس.
تمثل تلك المعادلة التقريبية متوسط زمني ومكاني لأن شدة إشعاع الهالة يعتمد اعتمادا قويا على خطوط العرض على الشمس وعلى النشاط الشمسي وقت المشاهدة.[10]
اللمعان الكلي للهالة
بإجراء التكامل للمعادلة السابقة من حافة الشمس حتى مالانهاية نحصل على اللمعان الكلي للهالة، وذلك عند حدوث خسوفا كليا للشمس. ويبلغ اللمعان الكلي للهالة نحو 1,6 · 10−6 من الضياء الكلي للشمس، أو من قدرها الظاهري البالغ −12m,3. ذلك اللمعان ضعيف وهو يعادل القدر الظاهري للمعان القمر عندما يكون بدرا. ولذلك فإننا نستطيع مشاهدة الهالة أثناء الخسوف الكلي للشمس من دون لوح غامق واقي للعين. وبمجرد أن يتزحزح القمر عن الشمس ويظهر خلفه هلال رفيع من الشمس تختفي الهالة عن أعيننا بسرعة. وعندئذ لا بد من استخدام واقي للعينين لمتابعة مشاهدة الخسوف.[11]
التكوين الطيفي للهالة
يتكون ضوء هالة الشمس من ثلاثة أجزاء أساسية، تظهر في التحليل الطيفي:
- الهالة F : ويتكون ضوؤها من ضوء الشمس المنعكس على غبار، وتسمى خطوطها الطيفية بأول حرف من اسم مكتشفها «فراونهوفر» الألماني (خطوط فراونهوفر).
- الهالة K : وهذه أيضا أشعة متشتتة على إلكترونات. ونظرا لأن سرعة حركة الإلكترونات مختلفة فإن أطوال موجات الضوء المتشتت عليها يعاني انزياح دوبلر، مما يجعل خطوط طيف فراونهوفر تنساب في طيف مستمر ولا تصبح خطوطا منفصلة واضحة.[12]
- الهالة L : وهذه خطوط طيف مميزة يصدرها غاز الهالة نفسه.
اقرأ أيضا
مراجع
- ^ Aschwanden, Markus J. (2005). Physics of the Solar Corona: An Introduction with Problems and Solutions. Chichester, UK: Praxis Publishing. ISBN 978-3-540-22321-4.
- ^ Aschwanden، M. J. (2004). Physics of the Solar Corona. An Introduction. Praxis Publishing Ltd. ISBN:3-540-22321-5.
- ^ "Sun Unleashes X6.9 Class Flare". NASA. مؤرشف من الأصل في 2017-06-27. اطلع عليه بتاريخ 2012-03-07.
- ^ de Ferrer, José Joaquín (1809). "Observations of the eclipse of the sun June 16th 1806 made at Kinderhook in the State of New York". Transactions of the American Philosophical Society. 6: 264–275. doi:10.2307/1004801. JSTOR 1004801.
- ^ Vaiana, G. S.; Krieger, A. S.; Timothy, A. F. (1973). "Identification and analysis of structures in the corona from X-ray photography". Solar Physics. 32 (1): 81–116. Bibcode:1973SoPh...32...81V. doi:10.1007/BF00152731. S2CID 121940724.
- ^ Vaiana, G S; Rosner, R (1978). "Recent advances in Coronae Physics". Annu. Rev. Astron. Astrophys. 16: 393–428. Bibcode:1978ARA&A..16..393V. doi:10.1146/annurev.aa.16.090178.002141.
- ^ Giacconi, Riccardo (1992). J. F. Linsky and S.Serio (ed.). G.S. Vaiana memorial lecture in Proceedinds of Physics of Solar and Stellar Coronae: G.S. Vaiana Memorial Symposium. Kluwer Academic Publishers-Printed in the Netherlands. pp. 3–19. ISBN 978-0-7923-2346-4.
- ^ Ito, Hiroaki; Tsuneta, Saku; Shiota, Daikou; Tokumaru, Munetoshi; Fujiki, Ken'Ichi (2010). "Is the Polar Region Different from the Quiet Region of the Sun?". The Astrophysical Journal. 719 (1): 131–142. arXiv:1005.3667. Bibcode:2010ApJ...719..131I. doi:10.1088/0004-637X/719/1/131. S2CID 118504417.
- ^ Pallavicini, R.; Serio, S.; Vaiana, G. S. (1977). "A survey of soft X-ray limb flare images – The relation between their structure in the corona and other physical parameters". The Astrophysical Journal. 216: 108. Bibcode:1977ApJ...216..108P. doi:10.1086/155452. Golub, L.; Herant, M.; Kalata, K.; Lovas, I.; Nystrom, G.; Pardo, F.; Spiller, E.; Wilczynski, J. (1990). "Sub-arcsecond observations of the solar X-ray corona". Nature. 344 (6269): 842–844. Bibcode:1990Natur.344..842G. doi:10.1038/344842a0. S2CID 4346856.
- ^ Mewe, R. (1991). "X-ray spectroscopy of stellar coronae". The Astronomy and Astrophysics Review. 3 (2): 127. Bibcode:1991A&ARv...3..127M. doi:10.1007/BF00873539. S2CID 55255606.
- ^ Ulmshneider, Peter (1997). J.C. Vial; K. Bocchialini; P. Boumier (eds.). Heating of Chromospheres and Coronae in Space Solar Physics, Proceedings, Orsay, France. Springer. pp. 77–106. ISBN 978-3-540-64307-4.
- ^ Malara, F.; Velli, M. (2001). Pål Brekke; Bernhard Fleck; Joseph B. Gurman (eds.). Observations and Models of Coronal Heating in Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, Proceedings of IAU Symposium 203. Astronomical Society of the Pacific. pp. 456–466. ISBN 978-1-58381-069-9.
مصادر
- Thorsten Dambeck: Seething Cauldron in the Suns's Furnace, MaxPlanckResearch, 2/2008, p. 28–33
- B. N. Dwivedi and A. K. Srivastava Coronal heating by Alfvén waves CURRENT 296 SCIENCE, VOL. 98, NO. 3, 10 FEBRUARY 2010, pp. 295–296
روابط خارجية
- NASA description of the solar corona
- Coronal heating problem at Innovation Reports
- NASA/GSFC description of the coronal heating problem
- FAQ about coronal heating
- Solar and Heliospheric Observatory, including near-real-time images of the solar corona
- Coronal x-ray images from the Hinode XRT
- nasa.gov Astronomy Picture of the Day July 26, 2009 – a combination of thirty-three photographs of the Sun's corona that were digitally processed to highlight faint features of a total eclipse that occurred in March 2006
- Animated explanation of the core of the Sun (University of South Wales)
- Alfvén waves may heat the Sun's corona
- Solar Interface Region – Bart de Pontieu (SETI Talks) Video
في كومنز صور وملفات عن: هالة |