| لا يزال النص الموجود في هذه الصفحة في مرحلة الترجمة إلى العربية. إذا كنت تعرف اللغة المستعملة، لا تتردد في الترجمة. |
محتويات
- 1 الصيغة
- 2 القائمة الكاملة [2]
- 2.1 j2=0
- 2.2 j1=1/2, j2=1/2
- 2.3 j1=1, j2=1/2
- 2.4 j1=1, j2=1
- 2.5 j1=3/2, j2=1/2
- 2.6 j1=3/2, j2=1
- 2.7 j1=3/2, j2=3/2
- 2.8 j1=2, j2=1/2
- 2.9 j1=2, j2=1
- 2.10 j1=2, j2=3/2
- 2.11 j1=2, j2=2
- 2.12 j1=5/2, j2=1/2
- 2.13 j1=5/2, j2=1
- 2.14 j1=5/2, j2=3/2
- 2.15 j1=5/2, j2=2
- 3 وصلات خارجية
- 4 مصادر ومراجع
- 5 طالع أيضا
الصيغة
الصيغة:Formulation
معاملات كلبسش-غوردان هي حلول ل:
بشكل مباشر (صريح) إلى:
The summation is extended over all integer k for which the argument of every factorial is nonnegative.[1]
For brevity, solutions with m < 0 and j1 < j2 are omitted. They may be calculated using the simple relations
- .
و
- .
القائمة الكاملة [2]
j2=0
عندما تكون j2=0، فإن معاملات كلبسش-غوردان تعطي
.
j1=1/2, j2=1/2
m=0
|
j
|
m1, m2
|
|
1
|
0
|
1/2, -1/2
|
|
|
-1/2, 1/2
|
|
|
|
j1=1, j2=1/2
m=1/2
|
j
|
m1, m2
|
|
3/2
|
1/2
|
1, -1/2
|
|
|
0, 1/2
|
|
|
|
j1=1, j2=1
m=1
|
j
|
m1, m2
|
|
2
|
1
|
1, 0
|
|
|
0, 1
|
|
|
|
m=0
|
j
|
m1, m2
|
|
2
|
1
|
0
|
1, -1
|
|
|
|
0, 0
|
|
|
|
-1, 1
|
|
|
|
|
j1=3/2, j2=1/2
m=1
|
j
|
m1, m2
|
|
2
|
1
|
3/2, -1/2
|
|
|
1/2, 1/2
|
|
|
|
m=0
|
j
|
m1, m2
|
|
2
|
1
|
1/2, -1/2
|
|
|
-1/2, 1/2
|
|
|
|
j1=3/2, j2=1
m=3/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
3/2, 0
|
|
|
1/2, 1
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
1/2
|
3/2, -1
|
|
|
|
1/2, 0
|
|
|
|
-1/2, 1
|
|
|
|
|
j1=3/2, j2=3/2
m=2
|
j
|
m1, m2
|
|
3
|
2
|
3/2, 1/2
|
|
|
1/2, 3/2
|
|
|
|
m=1
|
j
|
m1, m2
|
|
3
|
2
|
1
|
3/2, -1/2
|
|
|
|
1/2, 1/2
|
|
|
|
-1/2, 3/2
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
3
|
2
|
1
|
0
|
3/2, -3/2
|
|
|
|
|
1/2, -1/2
|
|
|
|
|
-1/2, 1/2
|
|
|
|
|
-3/2, 3/2
|
|
|
|
|
|
j1=2, j2=1/2
m=3/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
2, -1/2
|
|
|
1, 1/2
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
5/2
|
3/2
|
1, -1/2
|
|
|
0, 1/2
|
|
|
|
j1=2, j2=1
m=2
|
j
|
m1, m2
|
|
3
|
2
|
2, 0
|
|
|
1, 1
|
|
|
|
m=1
|
j
|
m1, m2
|
|
3
|
2
|
1
|
2, -1
|
|
|
|
1, 0
|
|
|
|
0, 1
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
3
|
2
|
1
|
1, -1
|
|
|
|
0, 0
|
|
|
|
-1, 1
|
|
|
|
|
j1=2, j2=3/2
m=5/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
2, 1/2
|
|
|
1, 3/2
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
2, -1/2
|
|
|
|
1, 1/2
|
|
|
|
0, 3/2
|
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
1/2
|
2, -3/2
|
|
|
|
|
1, -1/2
|
|
|
|
|
0, 1/2
|
|
|
|
|
-1, 3/2
|
|
|
|
|
|
j1=2, j2=2
m=3
|
j
|
m1, m2
|
|
4
|
3
|
2, 1
|
|
|
1, 2
|
|
|
|
m=2
|
j
|
m1, m2
|
|
4
|
3
|
2
|
2, 0
|
|
|
|
1, 1
|
|
|
|
0, 2
|
|
|
|
|
m=1
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
2, -1
|
|
|
|
|
1, 0
|
|
|
|
|
0, 1
|
|
|
|
|
-1, 2
|
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
0
|
2, -2
|
|
|
|
|
|
1, -1
|
|
|
|
|
|
0, 0
|
|
|
|
|
|
-1, 1
|
|
|
|
|
|
-2, 2
|
|
|
|
|
|
|
j1=5/2, j2=1/2
m=2
|
j
|
m1, m2
|
|
3
|
2
|
5/2, -1/2
|
|
|
3/2, 1/2
|
|
|
|
m=1
|
j
|
m1, m2
|
|
3
|
2
|
3/2, -1/2
|
|
|
1/2, 1/2
|
|
|
|
m=0
|
j
|
m1, m2
|
|
3
|
2
|
1/2, -1/2
|
|
|
-1/2, 1/2
|
|
|
|
j1=5/2, j2=1
m=5/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
5/2, 0
|
|
|
3/2, 1
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
5/2, -1
|
|
|
|
3/2, 0
|
|
|
|
1/2, 1
|
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
7/2
|
5/2
|
3/2
|
3/2, -1
|
|
|
|
1/2, 0
|
|
|
|
-1/2, 1
|
|
|
|
|
j1=5/2, j2=3/2
m=3
|
j
|
m1, m2
|
|
4
|
3
|
5/2, 1/2
|
|
|
3/2, 3/2
|
|
|
|
m=2
|
j
|
m1, m2
|
|
4
|
3
|
2
|
5/2, -1/2
|
|
|
|
3/2, 1/2
|
|
|
|
1/2, 3/2
|
|
|
|
|
m=1
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
5/2, -3/2
|
|
|
|
|
3/2, -1/2
|
|
|
|
|
1/2, 1/2
|
|
|
|
|
-1/2, 3/2
|
|
|
|
|
|
m=0
|
j
|
m1, m2
|
|
4
|
3
|
2
|
1
|
3/2, -3/2
|
|
|
|
|
1/2, -1/2
|
|
|
|
|
-1/2, 1/2
|
|
|
|
|
-3/2, 3/2
|
|
|
|
|
|
j1=5/2, j2=2
m=7/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2, 1
|
|
|
3/2, 2
|
|
|
|
m=5/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2
|
5/2, 0
|
|
|
|
3/2, 1
|
|
|
|
1/2, 2
|
|
|
|
|
m=3/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2
|
3/2
|
5/2, -1
|
|
|
|
|
3/2, 0
|
|
|
|
|
1/2, 1
|
|
|
|
|
-1/2, 2
|
|
|
|
|
|
m=1/2
|
j
|
m1, m2
|
|
9/2
|
7/2
|
5/2
|
3/2
|
1/2
|
5/2, -2
|
|
|
|
|
|
3/2, -1
|
|
|
|
|
|
1/2, 0
|
|
|
|
|
|
-1/2, 1
|
|
|
|
|
|
-3/2, 2
|
|
|
|
|
|
|
وصلات خارجية
مصادر ومراجع
- ^ (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN 0-387-95330-2.
- ^ Weisbluth، Michael (1978). Atoms and molecules. ACADEMIC PRESS. ص. 28. ISBN:0-12-744450-5. Table 1.4 resumes the most common.
طالع أيضا