هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

طوبولوجيا إقليدسية

من أرابيكا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

في الرياضيات، وبالأخص في الطوبولوجيا العامة، تُعتبر الطوبولوجيا الإقليدسية مثالاً للطوبولوجيا المعطاة لمجموعة الأعداد الحقيقية، التي يرمز لها بالرمز R. ولإعطاء مجموعة الأعداد الحقيقية R طوبولوجيا يعني أي المجموعات الفرعية للمجموعة R "مفتوحة"، ولفعل ذلك بطريقة تحقق المسلمات التالية:[1]

  1. اتحاد المجموعات المفتوحة يكون مجموعة مفتوحة.
  2. التقاطع المتناهي للمجموعات المفتوحة يكون مجموعة مفتوحة.
  3. المجموعة R والمجموعة الخالية ∅ هما مجموعتان مفتوحتان.

البنية

لابد أن تكون المجموعة R والمجموعة الخالية ∅ مجموعتين مفتوحتين، لذلك فإننا نحدد المجموعتين R و∅ على أنهما مجموعتان مفتوحتان في هذه الطوبولجيا. وفي حالة وجود اثنين من الأعداد الحقيقية، لنفترض وجود x وy، مع كون x < y فإننا نحدد عائلة لانهائية العدد للمجموعات المفتوحة والتي يُرمز إليها بالرمز Sx,y كما يلي:[1]

Sx,y={rR:x<r<y}.

ومع المجموعة R والمجموعة الخالية ∅، تستخدم المجموعات Sx,y مع استخدام x < y كأساس للطوبولوجيا الإقليدسية. وبعبارة أخرى، فإن المجموعات المفتوحة للطوبولوجيا الإقليدسية تُعطى من المجموعة R، والمجموعة الخالية ∅، والاتحادات والتقاطعات المتناهي للمجموعات Sx,y المتنوعة لأزواج (x,y) المختلفة.

الخصائص

  • الخط الحقيقي، لهذه الطوبولوجيا، هو T5 space. وفي حالة المجموعتين الجزئيتين، نفترض أن A وB للمجموعة R مع كون AB = AB = ∅، حيث A يرمز لغالق A إلخ، وبذلك توجد المجموعات المفتوحة SA وSB مع كون ASA وBSB بحيث SASB = ∅.[1]

المراجع

  1. ^ أ ب ت Steen، L. A.؛ Seebach، J. A. (1995)، Counterexamples in Topology، Dover، ISBN:0-486-68735-X