تضامنًا مع حق الشعب الفلسطيني |
فضاء طوبولوجي
تحتوي هذه المقالة اصطلاحات معربة غير مُوثَّقة. لا تشمل أرابيكا العربية الأبحاث الأصيلة، ويلزم أن تُرفق كل معلومة فيها بمصدر موثوق به. (أكتوبر 2015) |
في الطوبولوجيا والمجالات المتعلقة بها من الرياضيات، تُسمّى الثنائيةَ (E, T) فضاءً طوبولوجياً، حيث E مجموعة ما وT مجموعةٌ عناصرها هي مجوعات جزئية لِ E، إذا تحققت الخاصياتُ الثلاثة الآتية مجتمعةً:
- الفراغُ والشمولُ: المجموعة الفارغة Ø و E عضوان في T.[1][2][3]
- الوَصْل: أيُ اتحادٍ لأعضاء من T ينتمي لِ T (إن كان نهائياً أو غير نهائي).
- البَيْن: تقاطع أي مجموعتين من T ينتمي هو أيضا لِـ T (ليس ضروريا أن ينتمي تقاطع عدد لا نهائي من المجموعات من داخل T إلى T).
و في هذه الحالة نسمي T طوبولوجيّةً الفضاء، والمجموعات الأعضاء فيها نسميهن المجموعات المفتوحة في الفضاء. مجموعةٌ التي مكَمّلتها مجموعة مفتوحة تُسمّى مجموعة مغلقة.
أمثلة
طوبولوجية بديهية
لأي فضاء E يمكننا تعريف طوبولوجية عليه {T={E, Ø. ومن الواضح أن هذه المجموعة تحقق كل الشروط المبيَّنة أعلاه. هذا النوع من الطوبولوجيات يسمّى الطوبولوجية البديهية.
طوبولوجية منفردة
لأي فضاء E يمكننا أيضا تعريف طوبولوجية عليه (T=P(E. أي, طوبولوجية التي فيها كل مجموعة جزية للفضاء E هي مجموعة مفتوحة. ومن الواضح, في هذه الحالة أيضا, أن هذه المجموعة تحقق كل الشروط المبيَّنة أعلاه, ولذلك هي طوبولوجية حسب التعريف. هذا النوع من الطوبولوجيات يسمّى الطوبولوجية المنفردة.
تعريفات مكافئة
انظر أيضا
مراجع
- ^ "معلومات عن فضاء طوبولوجي على موقع id.loc.gov". id.loc.gov. مؤرشف من الأصل في 2020-02-07.
- ^ "معلومات عن فضاء طوبولوجي على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2020-05-11.
- ^ "معلومات عن فضاء طوبولوجي على موقع britannica.com". britannica.com. مؤرشف من الأصل في 2016-03-10.
وصلات خارجية
في كومنز صور وملفات عن: فضاء طوبولوجي |