هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

قاعدة معيارية (جبر خطي)

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبد العزيز (نقاش | مساهمات) في 20:59، 14 مارس 2023 (بوت: إصلاح التحويلات). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث
كل متجه a في الفضاء هو تركيبة خطية من متجهات القاعدة المعيارية i و j و k .

في الرياضيات ، القاعدة المعيارية (تسمى أيضًا القاعدة الناظمية ) لفضاء متجهي ذو إحداثيات هي مجموعة المتجهات التي تكون كل إحداثياتها عدا واحدة صفرًا ، وتكون الإحداثية المستثناة تساوي 1.[1] على سبيل المثال ، في حالة المستوى الإقليدي المكون من أزواج (x, y) من الأعداد الحقيقية، تتكون القاعدة المعيارية من المتجهات

ex=(1,0),ey=(0,1).

و كذلك، فإن القاعدة المعيارية للفضاء ثلاثي الأبعاد تتكون من المتجهات

ex=(1,0,0),ey=(0,1,0),ez=(0,0,1).

هنا يشير المتجه ex في اتجاه x ، ويشير المتجه ey في اتجاه y ، ويشير المتجه ez في اتجاه z . هناك العديد من الرموز الشائعة لمتجهات القاعدة المعيارية ، منها {exeyez} و {e1e2e3} و {ijk} و {xyz}. تتم كتابة هذه المتجهات أحيانًا بقبعة للتذكير بأنها من متجهات الوحدة ( متجهات الوحدة المعيارية ).

هذه المتجهات هي قاعدة بمعنى أنه يمكن التعبير عن أي متجه آخر كتركيبة خطية منها بشكل فريد. على سبيل المثال ، يمكن كتابة كل متجه v في الفضاء ثلاثي الأبعاد بشكل فريد كالنحو التالي:

vxex+vyey+vzez,

حيث تكون الكميات العددية vxvyvz هي المكونات العددية للمتجه v .

في الفضاء الإقليدي ذو n أبعاد Rn ، تتكون القاعدة المعيارية من n متجهات مختلفة

{ei:1in},

حيث يشير ei إلى المتجه الذي لديه 1 في الإحداثية عدد i و 0 في الإحداثيات الأخرى.

يمكن تعريف القواعد المعيارية لفضاءات متجهية أخرى إذا كان تعريف هذه الفضاءات يتضمن معاملات ، مثل فضاءات متعددات الحدود وفضاءات المصفوفات . في كلتا الحالتين ، تتكون القاعدة المعيارية من عناصر الفضاء التي تكون جميع معاملاتها 0 باستثناء واحد يكون 1. بالنسبة لمتعددات الحدود ، تتكون القاعدة المعيارية من وحيدات الحد وتسمى عادة القاعدة الأحادية الحد . للمصفوفات m×n ، تتكون القاعدة المعيارية من المصفوفات m × n ذات مكون واحد غير صفري ، والذي يساوي 1. على سبيل المثال ، يتم تشكيل القاعدة المعيارية لمصفوفات 2 × 2 بواسطة المصفوفات الأربع

e11=(1000),e12=(0100),e21=(0010),e22=(0001).

المراجع

  1. ^ "معلومات عن قاعدة معيارية (جبر خطي) على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2021-05-07.