جدول تفكيك الأعداد الصحيحة الغاوسية
في نظرية الأعداد، عدد طبيعي غاوسي هو عدد عقدي جزءه الحقيقي وجزءه التخيلي هما عددان صحيحان.[1]
- حيث .
معضلات لم تحلحل بعد
تسأل معضلة الدائرة لغاوس عن عدد النقط في مشبك النقط الموجودات داخل دائرة ما مركزها هو مركز المعلم. يكافئ هذا السؤال ما يلي: كم عدد الأعداد الصحيحة الغاوسية الذين معيارهم لا يتجاوز قيمة معينة ؟
التفكيك
المعيار | العدد الصحيح | العامل |
---|---|---|
2 | 1+i | (p) |
4 | 2 | −i·(1+i)2 |
5 | 1+2i 2+i |
(p) (p) |
8 | 2+2i | −i·(1+i)3 |
9 | 3 | (p) |
10 | 1+3i 3+i |
(1+i)·(2+i) (1+i)·(2−i) |
13 | 2+3i 3+2i |
(p) (p) |
16 | 4 | −(1+i)4 |
17 | 1+4i 4+i |
(p) (p) |
18 | 3+3i | (1+i)·3 |
20 | 2+4i 4+2i |
(1+i)2·(2−i) −i·(1+i)2·(2+i) |
25 | 3+4i 4+3i 5 |
(2+i)2 i·(2−i)2 (2+i)·(2−i) |
26 | 1+5i 5+i |
(1+i)·(3+2i) (1+i)·(3−2i) |
29 | 2+5i 5+2i |
(p) (p) |
32 | 4+4i | −(1+i)5 |
34 | 3+5i 5+3i |
(1+i)·(4+i) (1+i)·(4−i) |
36 | 6 | −i·(1+i)2·3 |
37 | 1+6i 6+i |
(p) (p) |
40 | 2+6i 6+2i |
−i·(1+i)3·(2+i) −i·(1+i)3·(2−i) |
41 | 4+5i 5+4i |
(p) (p) |
45 | 3+6i 6+3i |
i·(2−i)·3 (2+i)·3 |
49 | 7 | (p) |
50 | 1+7i 5+5i 7+i |
i·(1+i)·(2−i)2 (1+i)·(2+i)·(2−i) −i·(1+i)·(2+i)2 |
52 | 4+6i 6+4i |
(1+i)2·(3−2i) −i·(1+i)2·(3+2i) |
53 | 2+7i 7+2i |
(p) (p) |
58 | 3+7i 7+3i |
(1+i)·(5+2i) (1+i)·(5−2i) |
61 | 5+6i 6+5i |
(p) (p) |
64 | 8 | i·(1+i)6 |
65 | 1+8i 4+7i 7+4i 8+i |
i·(2+i)·(3−2i) (2+i)·(3+2i) i·(2−i)·(3−2i) (2−i)·(3+2i) |
68 | 2+8i 8+2i |
(1+i)2·(4−i) −i·(1+i)2·(4+i) |
72 | 6+6i | −i·(1+i)3·3 |
73 | 3+8i 8+3i |
(p) (p) |
74 | 5+7i 7+5i |
(1+i)·(6+i) (1+i)·(6−i) |
80 | 4+8i 8+4i |
−i·(1+i)4·(2−i) −(1+i)4·(2+i) |
81 | 9 | 32 |
82 | 1+9i 9+i |
(1+i)·(5+4i) (1+i)·(5−4i) |
85 | 2+9i 6+7i 7+6i 9+2i |
i·(2−i)·(4+i) i·(2−i)·(4−i) (2+i)·(4+i) (2+i)·(4−i) |
89 | 5+8i 8+5i |
(p) (p) |
90 | 3+9i 9+3i |
(1+i)·(2+i)·3 (1+i)·(2−i)·3 |
97 | 4+9i 9+4i |
(p) (p) |
98 | 7+7i | (1+i)·7 |
100 | 6+8i 8+6i 10 |
−i·(1+i)2·(2+i)2 (1+i)2·(2−i)2 −i·(1+i)2·(2+i)·(2−i) |
101 | 1+10i 10+i |
(p) (p) |
104 | 2+10i 10+2i |
−i·(1+i)3·(3+2i) −i·(1+i)3·(3−2i) |
106 | 5+9i 9+5i |
(1+i)·(7+2i) (1+i)·(7−2i) |
109 | 3+10i 10+3i |
(p) (p) |
113 | 7+8i 8+7i |
(p) (p) |
116 | 4+10i 10+4i |
(1+i)2·(5−2i) −i·(1+i)2·(5+2i) |
117 | 6+9i 9+6i |
i·3·(3−2i) 3·(3+2i) |
121 | 11 | (p) |
122 | 1+11i 11+i |
(1+i)·(6+5i) (1+i)·(6−5i) |
125 | 2+11i 5+10i 10+5i 11+2i |
(2+i)3 i·(2+i)·(2−i)2 (2+i)2·(2−i) i·(2−i)3 |
128 | 8+8i | i·(1+i)7 |
130 | 3+11i 7+9i 9+7i 11+3i |
i·(1+i)·(2−i)·(3−2i) (1+i)·(2−i)·(3+2i) (1+i)·(2+i)·(3−2i) −i·(1+i)·(2+i)·(3+2i) |
136 | 6+10i 10+6i |
−i·(1+i)3·(4+i) −i·(1+i)3·(4−i) |
137 | 4+11i 11+4i |
(p) (p) |
144 | 12 | −(1+i)4·3 |
145 | 1+12i 8+9i 9+8i 12+i |
i·(2−i)·(5+2i) (2+i)·(5+2i) i·(2−i)·(5−2i) (2+i)·(5−2i) |
146 | 5+11i 11+5i |
(1+i)·(8+3i) (1+i)·(8−3i) |
148 | 2+12i 12+2i |
(1+i)2·(6−i) −i·(1+i)2·(6+i) |
149 | 7+10i 10+7i |
(p) (p) |
153 | 3+12i 12+3i |
i·3·(4−i) 3·(4+i) |
157 | 6+11i 11+6i |
(p) (p) |
160 | 4+12i 12+4i |
−(1+i)5·(2+i) −(1+i)5·(2−i) |
162 | 9+9i | (1+i)·32 |
164 | 8+10i 10+8i |
(1+i)2·(5−4i) −i·(1+i)2·(5+4i) |
169 | 5+12i 12+5i 13 |
(3+2i)2 i·(3−2i)2 (3+2i)·(3−2i) |
170 | 1+13i 7+11i 11+7i 13+i |
(1+i)·(2+i)·(4+i) (1+i)·(2+i)·(4−i) (1+i)·(2−i)·(4+i) (1+i)·(2−i)·(4−i) |
173 | 2+13i 13+2i |
(p) (p) |
178 | 3+13i 13+3i |
(1+i)·(8+5i) (1+i)·(8−5i) |
180 | 6+12i 12+6i |
(1+i)2·(2−i)·3 −i·(1+i)2·(2+i)·3 |
181 | 9+10i 10+9i |
(p) (p) |
185 | 4+13i 8+11i 11+8i 13+4i |
i·(2−i)·(6+i) i·(2−i)·(6−i) (2+i)·(6+i) (2+i)·(6−i) |
193 | 7+12i 12+7i |
(p) (p) |
194 | 5+13i 13+5i |
(1+i)·(9+4i) (1+i)·(9−4i) |
196 | 14 | −i·(1+i)2·7 |
197 | 1+14i 14+i |
(p) (p) |
200 | 2+14i 10+10i 14+2i |
(1+i)3·(2−i)2 −i·(1+i)3·(2+i)·(2−i) −(1+i)3·(2+i)2 |
202 | 9+11i 11+9i |
(1+i)·(10+i) (1+i)·(10−i) |
205 | 3+14i 6+13i 13+6i 14+3i |
i·(2+i)·(5−4i) (2+i)·(5+4i) i·(2−i)·(5−4i) (2−i)·(5+4i) |
208 | 8+12i 12+8i |
−i·(1+i)4·(3−2i) −(1+i)4·(3+2i) |
212 | 4+14i 14+4i |
(1+i)2·(7−2i) −i·(1+i)2·(7+2i) |
218 | 7+13i 13+7i |
(1+i)·(10+3i) (1+i)·(10−3i) |
221 | 5+14i 10+11i 11+10i 14+5i |
i·(3−2i)·(4+i) (3+2i)·(4+i) i·(3−2i)·(4−i) (3+2i)·(4−i) |
225 | 9+12i 12+9i 15 |
(2+i)2·3 i·(2−i)2·3 (2+i)·(2−i)·3 |
226 | 1+15i 15+i |
(1+i)·(8+7i) (1+i)·(8−7i) |
229 | 2+15i 15+2i |
(p) (p) |
232 | 6+14i 14+6i |
−i·(1+i)3·(5+2i) −i·(1+i)3·(5−2i) |
233 | 8+13i 13+8i |
(p) (p) |
234 | 3+15i 15+3i |
(1+i)·3·(3+2i) (1+i)·3·(3−2i) |
241 | 4+15i 15+4i |
(p) (p) |
242 | 11+11i | (1+i)·11 |
244 | 10+12i 12+10i |
(1+i)2·(6−5i) −i·(1+i)2·(6+5i) |
245 | 7+14i 14+7i |
i·(2−i)·7 (2+i)·7 |
250 | 5+15i 9+13i 13+9i 15+5i |
(1+i)·(2+i)2·(2−i) i·(1+i)·(2−i)3 −i·(1+i)·(2+i)3 (1+i)·(2+i)·(2−i)2 |
المعيار | العدد الصحيح | العوامل |
---|---|---|
256 | 16 | (1+i)8 |
257 | 1+16i 16+i |
(p) (p) |
260 | 2+16i 8+14i 14+8i 16+2i |
(1+i)2·(2+i)·(3−2i) −i·(1+i)2·(2+i)·(3+2i) (1+i)2·(2−i)·(3−2i) −i·(1+i)2·(2−i)·(3+2i) |
261 | 6+15i 15+6i |
i·3·(5−2i) 3·(5+2i) |
265 | 3+16i 11+12i 12+11i 16+3i |
i·(2−i)·(7+2i) i·(2−i)·(7−2i) (2+i)·(7+2i) (2+i)·(7−2i) |
269 | 10+13i 13+10i |
(p) (p) |
272 | 4+16i 16+4i |
−i·(1+i)4·(4−i) −(1+i)4·(4+i) |
274 | 7+15i 15+7i |
(1+i)·(11+4i) (1+i)·(11−4i) |
277 | 9+14i 14+9i |
(p) (p) |
281 | 5+16i 16+5i |
(p) (p) |
288 | 12+12i | −(1+i)5·3 |
289 | 8+15i 15+8i 17 |
i·(4−i)2 (4+i)2 (4+i)·(4−i) |
290 | 1+17i 11+13i 13+11i 17+i |
i·(1+i)·(2−i)·(5−2i) (1+i)·(2+i)·(5−2i) (1+i)·(2−i)·(5+2i) −i·(1+i)·(2+i)·(5+2i) |
292 | 6+16i 16+6i |
(1+i)2·(8−3i) −i·(1+i)2·(8+3i) |
293 | 2+17i 17+2i |
(p) (p) |
296 | 10+14i 14+10i |
−i·(1+i)3·(6+i) −i·(1+i)3·(6−i) |
298 | 3+17i 17+3i |
(1+i)·(10+7i) (1+i)·(10−7i) |
305 | 4+17i 7+16i 16+7i 17+4i |
i·(2+i)·(6−5i) (2+i)·(6+5i) i·(2−i)·(6−5i) (2−i)·(6+5i) |
306 | 9+15i 15+9i |
(1+i)·3·(4+i) (1+i)·3·(4−i) |
313 | 12+13i 13+12i |
(p) (p) |
314 | 5+17i 17+5i |
(1+i)·(11+6i) (1+i)·(11−6i) |
317 | 11+14i 14+11i |
(p) (p) |
320 | 8+16i 16+8i |
−(1+i)6·(2−i) i·(1+i)6·(2+i) |
324 | 18 | −i·(1+i)2·32 |
325 | 1+18i 6+17i 10+15i 15+10i 17+6i 18+i |
(2+i)2·(3+2i) i·(2−i)2·(3+2i) i·(2+i)·(2−i)·(3−2i) (2+i)·(2−i)·(3+2i) (2+i)2·(3−2i) i·(2−i)2·(3−2i) |
328 | 2+18i 18+2i |
−i·(1+i)3·(5+4i) −i·(1+i)3·(5−4i) |
333 | 3+18i 18+3i |
i·3·(6−i) 3·(6+i) |
337 | 9+16i 16+9i |
(p) (p) |
338 | 7+17i 13+13i 17+7i |
i·(1+i)·(3−2i)2 (1+i)·(3+2i)·(3−2i) −i·(1+i)·(3+2i)2 |
340 | 4+18i 12+14i 14+12i 18+4i |
(1+i)2·(2−i)·(4+i) (1+i)2·(2−i)·(4−i) −i·(1+i)2·(2+i)·(4+i) −i·(1+i)2·(2+i)·(4−i) |
346 | 11+15i 15+11i |
(1+i)·(13+2i) (1+i)·(13−2i) |
349 | 5+18i 18+5i |
(p) (p) |
353 | 8+17i 17+8i |
(p) (p) |
356 | 10+16i 16+10i |
(1+i)2·(8−5i) −i·(1+i)2·(8+5i) |
360 | 6+18i 18+6i |
−i·(1+i)3·(2+i)·3 −i·(1+i)3·(2−i)·3 |
361 | 19 | (p) |
362 | 1+19i 19+i |
(1+i)·(10+9i) (1+i)·(10−9i) |
365 | 2+19i 13+14i 14+13i 19+2i |
i·(2−i)·(8+3i) (2+i)·(8+3i) i·(2−i)·(8−3i) (2+i)·(8−3i) |
369 | 12+15i 15+12i |
i·3·(5−4i) 3·(5+4i) |
370 | 3+19i 9+17i 17+9i 19+3i |
(1+i)·(2+i)·(6+i) (1+i)·(2+i)·(6−i) (1+i)·(2−i)·(6+i) (1+i)·(2−i)·(6−i) |
373 | 7+18i 18+7i |
(p) (p) |
377 | 4+19i 11+16i 16+11i 19+4i |
i·(3−2i)·(5+2i) (3+2i)·(5+2i) i·(3−2i)·(5−2i) (3+2i)·(5−2i) |
386 | 5+19i 19+5i |
(1+i)·(12+7i) (1+i)·(12−7i) |
388 | 8+18i 18+8i |
(1+i)2·(9−4i) −i·(1+i)2·(9+4i) |
389 | 10+17i 17+10i |
(p) (p) |
392 | 14+14i | −i·(1+i)3·7 |
394 | 13+15i 15+13i |
(1+i)·(14+i) (1+i)·(14−i) |
397 | 6+19i 19+6i |
(p) (p) |
400 | 12+16i 16+12i 20 |
−(1+i)4·(2+i)2 −i·(1+i)4·(2−i)2 −(1+i)4·(2+i)·(2−i) |
401 | 1+20i 20+i |
(p) (p) |
404 | 2+20i 20+2i |
(1+i)2·(10−i) −i·(1+i)2·(10+i) |
405 | 9+18i 18+9i |
i·(2−i)·32 (2+i)·32 |
409 | 3+20i 20+3i |
(p) (p) |
410 | 7+19i 11+17i 17+11i 19+7i |
i·(1+i)·(2−i)·(5−4i) (1+i)·(2−i)·(5+4i) (1+i)·(2+i)·(5−4i) −i·(1+i)·(2+i)·(5+4i) |
416 | 4+20i 20+4i |
−(1+i)5·(3+2i) −(1+i)5·(3−2i) |
421 | 14+15i 15+14i |
(p) (p) |
424 | 10+18i 18+10i |
−i·(1+i)3·(7+2i) −i·(1+i)3·(7−2i) |
425 | 5+20i 8+19i 13+16i 16+13i 19+8i 20+5i |
i·(2+i)·(2−i)·(4−i) (2+i)2·(4+i) i·(2−i)2·(4+i) (2+i)2·(4−i) i·(2−i)2·(4−i) (2+i)·(2−i)·(4+i) |
433 | 12+17i 17+12i |
(p) (p) |
436 | 6+20i 20+6i |
(1+i)2·(10−3i) −i·(1+i)2·(10+3i) |
441 | 21 | 3·7 |
442 | 1+21i 9+19i 19+9i 21+i |
i·(1+i)·(3−2i)·(4−i) (1+i)·(3+2i)·(4−i) (1+i)·(3−2i)·(4+i) −i·(1+i)·(3+2i)·(4+i) |
445 | 2+21i 11+18i 18+11i 21+2i |
i·(2+i)·(8−5i) (2+i)·(8+5i) i·(2−i)·(8−5i) (2−i)·(8+5i) |
449 | 7+20i 20+7i |
(p) (p) |
450 | 3+21i 15+15i 21+3i |
i·(1+i)·(2−i)2·3 (1+i)·(2+i)·(2−i)·3 −i·(1+i)·(2+i)2·3 |
452 | 14+16i 16+14i |
(1+i)2·(8−7i) −i·(1+i)2·(8+7i) |
457 | 4+21i 21+4i |
(p) (p) |
458 | 13+17i 17+13i |
(1+i)·(15+2i) (1+i)·(15−2i) |
461 | 10+19i 19+10i |
(p) (p) |
464 | 8+20i 20+8i |
−i·(1+i)4·(5−2i) −(1+i)4·(5+2i) |
466 | 5+21i 21+5i |
(1+i)·(13+8i) (1+i)·(13−8i) |
468 | 12+18i 18+12i |
(1+i)2·3·(3−2i) −i·(1+i)2·3·(3+2i) |
477 | 6+21i 21+6i |
i·3·(7−2i) 3·(7+2i) |
481 | 9+20i 15+16i 16+15i 20+9i |
i·(3−2i)·(6+i) i·(3−2i)·(6−i) (3+2i)·(6+i) (3+2i)·(6−i) |
482 | 11+19i 19+11i |
(1+i)·(15+4i) (1+i)·(15−4i) |
484 | 22 | −i·(1+i)2·11 |
485 | 1+22i 14+17i 17+14i 22+i |
i·(2−i)·(9+4i) (2+i)·(9+4i) i·(2−i)·(9−4i) (2+i)·(9−4i) |
488 | 2+22i 22+2i |
−i·(1+i)3·(6+5i) −i·(1+i)3·(6−5i) |
490 | 7+21i 21+7i |
(1+i)·(2+i)·7 (1+i)·(2−i)·7 |
493 | 3+22i 13+18i 18+13i 22+3i |
i·(4+i)·(5−2i) i·(4−i)·(5−2i) (4+i)·(5+2i) (4−i)·(5+2i) |
500 | 4+22i 10+20i 20+10i 22+4i |
−i·(1+i)2·(2+i)3 (1+i)2·(2+i)·(2−i)2 −i·(1+i)2·(2+i)2·(2−i) (1+i)2·(2−i)3 |
المعيار | العدد الصحيح | العوامل |
---|---|---|
505 | 8+21i 12+19i 19+12i 21+8i |
i·(2−i)·(10+i) i·(2−i)·(10−i) (2+i)·(10+i) (2+i)·(10−i) |
509 | 5+22i 22+5i |
(p) (p) |
512 | 16+16i | (1+i)9 |
514 | 15+17i 17+15i |
(1+i)·(16+i) (1+i)·(16−i) |
520 | 6+22i 14+18i 18+14i 22+6i |
(1+i)3·(2−i)·(3−2i) −i·(1+i)3·(2−i)·(3+2i) −i·(1+i)3·(2+i)·(3−2i) −(1+i)3·(2+i)·(3+2i) |
521 | 11+20i 20+11i |
(p) (p) |
522 | 9+21i 21+9i |
(1+i)·3·(5+2i) (1+i)·3·(5−2i) |
529 | 23 | (p) |
530 | 1+23i 13+19i 19+13i 23+i |
(1+i)·(2+i)·(7+2i) (1+i)·(2+i)·(7−2i) (1+i)·(2−i)·(7+2i) (1+i)·(2−i)·(7−2i) |
533 | 2+23i 7+22i 22+7i 23+2i |
i·(3+2i)·(5−4i) (3+2i)·(5+4i) i·(3−2i)·(5−4i) (3−2i)·(5+4i) |
538 | 3+23i 23+3i |
(1+i)·(13+10i) (1+i)·(13−10i) |
541 | 10+21i 21+10i |
(p) (p) |
544 | 12+20i 20+12i |
−(1+i)5·(4+i) −(1+i)5·(4−i) |
545 | 4+23i 16+17i 17+16i 23+4i |
i·(2−i)·(10+3i) i·(2−i)·(10−3i) (2+i)·(10+3i) (2+i)·(10−3i) |
548 | 8+22i 22+8i |
(1+i)2·(11−4i) −i·(1+i)2·(11+4i) |
549 | 15+18i 18+15i |
i·3·(6−5i) 3·(6+5i) |
554 | 5+23i 23+5i |
(1+i)·(14+9i) (1+i)·(14−9i) |
557 | 14+19i 19+14i |
(p) (p) |
562 | 11+21i 21+11i |
(1+i)·(16+5i) (1+i)·(16−5i) |
565 | 6+23i 9+22i 22+9i 23+6i |
i·(2+i)·(8−7i) (2+i)·(8+7i) i·(2−i)·(8−7i) (2−i)·(8+7i) |
569 | 13+20i 20+13i |
(p) (p) |
576 | 24 | i·(1+i)6·3 |
577 | 1+24i 24+i |
(p) (p) |
578 | 7+23i 17+17i 23+7i |
(1+i)·(4+i)2 (1+i)·(4+i)·(4−i) (1+i)·(4−i)2 |
580 | 2+24i 16+18i 18+16i 24+2i |
(1+i)2·(2−i)·(5+2i) −i·(1+i)2·(2+i)·(5+2i) (1+i)2·(2−i)·(5−2i) −i·(1+i)2·(2+i)·(5−2i) |
584 | 10+22i 22+10i |
−i·(1+i)3·(8+3i) −i·(1+i)3·(8−3i) |
585 | 3+24i 12+21i 21+12i 24+3i |
i·(2+i)·3·(3−2i) (2+i)·3·(3+2i) i·(2−i)·3·(3−2i) (2−i)·3·(3+2i) |
586 | 15+19i 19+15i |
(1+i)·(17+2i) (1+i)·(17−2i) |
592 | 4+24i 24+4i |
−i·(1+i)4·(6−i) −(1+i)4·(6+i) |
593 | 8+23i 23+8i |
(p) (p) |
596 | 14+20i 20+14i |
(1+i)2·(10−7i) −i·(1+i)2·(10+7i) |
601 | 5+24i 24+5i |
(p) (p) |
605 | 11+22i 22+11i |
i·(2−i)·11 (2+i)·11 |
610 | 9+23i 13+21i 21+13i 23+9i |
i·(1+i)·(2−i)·(6−5i) (1+i)·(2−i)·(6+5i) (1+i)·(2+i)·(6−5i) −i·(1+i)·(2+i)·(6+5i) |
612 | 6+24i 24+6i |
(1+i)2·3·(4−i) −i·(1+i)2·3·(4+i) |
613 | 17+18i 18+17i |
(p) (p) |
617 | 16+19i 19+16i |
(p) (p) |
625 | 7+24i 15+20i 20+15i 24+7i 25 |
−(2−i)4 (2+i)3·(2−i) i·(2+i)·(2−i)3 −i·(2+i)4 (2+i)2·(2−i)2 |
626 | 1+25i 25+i |
(1+i)·(13+12i) (1+i)·(13−12i) |
628 | 12+22i 22+12i |
(1+i)2·(11−6i) −i·(1+i)2·(11+6i) |
629 | 2+25i 10+23i 23+10i 25+2i |
i·(4−i)·(6+i) i·(4−i)·(6−i) (4+i)·(6+i) (4+i)·(6−i) |
634 | 3+25i 25+3i |
(1+i)·(14+11i) (1+i)·(14−11i) |
637 | 14+21i 21+14i |
i·(3−2i)·7 (3+2i)·7 |
640 | 8+24i 24+8i |
i·(1+i)7·(2+i) i·(1+i)7·(2−i) |
641 | 4+25i 25+4i |
(p) (p) |
648 | 18+18i | −i·(1+i)3·32 |
650 | 5+25i 11+23i 17+19i 19+17i 23+11i 25+5i |
(1+i)·(2+i)·(2−i)·(3+2i) (1+i)·(2+i)2·(3−2i) i·(1+i)·(2−i)2·(3−2i) −i·(1+i)·(2+i)2·(3+2i) (1+i)·(2−i)2·(3+2i) (1+i)·(2+i)·(2−i)·(3−2i) |
653 | 13+22i 22+13i |
(p) (p) |
656 | 16+20i 20+16i |
−i·(1+i)4·(5−4i) −(1+i)4·(5+4i) |
657 | 9+24i 24+9i |
i·3·(8−3i) 3·(8+3i) |
661 | 6+25i 25+6i |
(p) (p) |
666 | 15+21i 21+15i |
(1+i)·3·(6+i) (1+i)·3·(6−i) |
673 | 12+23i 23+12i |
(p) (p) |
674 | 7+25i 25+7i |
(1+i)·(16+9i) (1+i)·(16−9i) |
676 | 10+24i 24+10i 26 |
−i·(1+i)2·(3+2i)2 (1+i)2·(3−2i)2 −i·(1+i)2·(3+2i)·(3−2i) |
677 | 1+26i 26+i |
(p) (p) |
680 | 2+26i 14+22i 22+14i 26+2i |
−i·(1+i)3·(2+i)·(4+i) −i·(1+i)3·(2+i)·(4−i) −i·(1+i)3·(2−i)·(4+i) −i·(1+i)3·(2−i)·(4−i) |
685 | 3+26i 18+19i 19+18i 26+3i |
i·(2−i)·(11+4i) (2+i)·(11+4i) i·(2−i)·(11−4i) (2+i)·(11−4i) |
689 | 8+25i 17+20i 20+17i 25+8i |
i·(3−2i)·(7+2i) (3+2i)·(7+2i) i·(3−2i)·(7−2i) (3+2i)·(7−2i) |
692 | 4+26i 26+4i |
(1+i)2·(13−2i) −i·(1+i)2·(13+2i) |
697 | 11+24i 16+21i 21+16i 24+11i |
i·(4+i)·(5−4i) (4+i)·(5+4i) i·(4−i)·(5−4i) (4−i)·(5+4i) |
698 | 13+23i 23+13i |
(1+i)·(18+5i) (1+i)·(18−5i) |
701 | 5+26i 26+5i |
(p) (p) |
706 | 9+25i 25+9i |
(1+i)·(17+8i) (1+i)·(17−8i) |
709 | 15+22i 22+15i |
(p) (p) |
712 | 6+26i 26+6i |
−i·(1+i)3·(8+5i) −i·(1+i)3·(8−5i) |
720 | 12+24i 24+12i |
−i·(1+i)4·(2−i)·3 −(1+i)4·(2+i)·3 |
722 | 19+19i | (1+i)·19 |
724 | 18+20i 20+18i |
(1+i)2·(10−9i) −i·(1+i)2·(10+9i) |
725 | 7+26i 10+25i 14+23i 23+14i 25+10i 26+7i |
(2+i)2·(5+2i) i·(2+i)·(2−i)·(5−2i) i·(2−i)2·(5+2i) (2+i)2·(5−2i) (2+i)·(2−i)·(5+2i) i·(2−i)2·(5−2i) |
729 | 27 | 33 |
730 | 1+27i 17+21i 21+17i 27+i |
i·(1+i)·(2−i)·(8−3i) (1+i)·(2+i)·(8−3i) (1+i)·(2−i)·(8+3i) −i·(1+i)·(2+i)·(8+3i) |
733 | 2+27i 27+2i |
(p) (p) |
738 | 3+27i 27+3i |
(1+i)·3·(5+4i) (1+i)·3·(5−4i) |
740 | 8+26i 16+22i 22+16i 26+8i |
(1+i)2·(2−i)·(6+i) (1+i)2·(2−i)·(6−i) −i·(1+i)2·(2+i)·(6+i) −i·(1+i)2·(2+i)·(6−i) |
745 | 4+27i 13+24i 24+13i 27+4i |
i·(2+i)·(10−7i) (2+i)·(10+7i) i·(2−i)·(10−7i) (2−i)·(10+7i) |
746 | 11+25i 25+11i |
(1+i)·(18+7i) (1+i)·(18−7i) |
المعيار | العدد الصحيح | العوامل |
---|---|---|
754 | 5+27i 15+23i 23+15i 27+5i |
i·(1+i)·(3−2i)·(5−2i) (1+i)·(3+2i)·(5−2i) (1+i)·(3−2i)·(5+2i) −i·(1+i)·(3+2i)·(5+2i) |
757 | 9+26i 26+9i |
(p) (p) |
761 | 19+20i 20+19i |
(p) (p) |
765 | 6+27i 18+21i 21+18i 27+6i |
i·(2−i)·3·(4+i) i·(2−i)·3·(4−i) (2+i)·3·(4+i) (2+i)·3·(4−i) |
769 | 12+25i 25+12i |
(p) (p) |
772 | 14+24i 24+14i |
(1+i)2·(12−7i) −i·(1+i)2·(12+7i) |
773 | 17+22i 22+17i |
(p) (p) |
776 | 10+26i 26+10i |
−i·(1+i)3·(9+4i) −i·(1+i)3·(9−4i) |
778 | 7+27i 27+7i |
(1+i)·(17+10i) (1+i)·(17−10i) |
784 | 28 | −(1+i)4·7 |
785 | 1+28i 16+23i 23+16i 28+i |
i·(2+i)·(11−6i) (2+i)·(11+6i) i·(2−i)·(11−6i) (2−i)·(11+6i) |
788 | 2+28i 28+2i |
(1+i)2·(14−i) −i·(1+i)2·(14+i) |
793 | 3+28i 8+27i 27+8i 28+3i |
i·(3+2i)·(6−5i) (3+2i)·(6+5i) i·(3−2i)·(6−5i) (3−2i)·(6+5i) |
794 | 13+25i 25+13i |
(1+i)·(19+6i) (1+i)·(19−6i) |
797 | 11+26i 26+11i |
(p) (p) |
800 | 4+28i 20+20i 28+4i |
−i·(1+i)5·(2−i)2 −(1+i)5·(2+i)·(2−i) i·(1+i)5·(2+i)2 |
801 | 15+24i 24+15i |
i·3·(8−5i) 3·(8+5i) |
802 | 19+21i 21+19i |
(1+i)·(20+i) (1+i)·(20−i) |
808 | 18+22i 22+18i |
−i·(1+i)3·(10+i) −i·(1+i)3·(10−i) |
809 | 5+28i 28+5i |
(p) (p) |
810 | 9+27i 27+9i |
(1+i)·(2+i)·32 (1+i)·(2−i)·32 |
818 | 17+23i 23+17i |
(1+i)·(20+3i) (1+i)·(20−3i) |
820 | 6+28i 12+26i 26+12i 28+6i |
(1+i)2·(2+i)·(5−4i) −i·(1+i)2·(2+i)·(5+4i) (1+i)2·(2−i)·(5−4i) −i·(1+i)2·(2−i)·(5+4i) |
821 | 14+25i 25+14i |
(p) (p) |
829 | 10+27i 27+10i |
(p) (p) |
832 | 16+24i 24+16i |
−(1+i)6·(3−2i) i·(1+i)6·(3+2i) |
833 | 7+28i 28+7i |
i·(4−i)·7 (4+i)·7 |
841 | 20+21i 21+20i 29 |
i·(5−2i)2 (5+2i)2 (5+2i)·(5−2i) |
842 | 1+29i 29+i |
(1+i)·(15+14i) (1+i)·(15−14i) |
845 | 2+29i 13+26i 19+22i 22+19i 26+13i 29+2i |
−(2−i)·(3−2i)2 i·(2−i)·(3+2i)·(3−2i) i·(2+i)·(3−2i)2 (2−i)·(3+2i)2 (2+i)·(3+2i)·(3−2i) −i·(2+i)·(3+2i)2 |
848 | 8+28i 28+8i |
−i·(1+i)4·(7−2i) −(1+i)4·(7+2i) |
850 | 3+29i 11+27i 15+25i 25+15i 27+11i 29+3i |
(1+i)·(2+i)2·(4−i) i·(1+i)·(2−i)2·(4−i) (1+i)·(2+i)·(2−i)·(4+i) (1+i)·(2+i)·(2−i)·(4−i) −i·(1+i)·(2+i)2·(4+i) (1+i)·(2−i)2·(4+i) |
853 | 18+23i 23+18i |
(p) (p) |
857 | 4+29i 29+4i |
(p) (p) |
865 | 9+28i 17+24i 24+17i 28+9i |
i·(2−i)·(13+2i) i·(2−i)·(13−2i) (2+i)·(13+2i) (2+i)·(13−2i) |
866 | 5+29i 29+5i |
(1+i)·(17+12i) (1+i)·(17−12i) |
872 | 14+26i 26+14i |
−i·(1+i)3·(10+3i) −i·(1+i)3·(10−3i) |
873 | 12+27i 27+12i |
i·3·(9−4i) 3·(9+4i) |
877 | 6+29i 29+6i |
(p) (p) |
881 | 16+25i 25+16i |
(p) (p) |
882 | 21+21i | (1+i)·3·7 |
884 | 10+28i 20+22i 22+20i 28+10i |
(1+i)2·(3−2i)·(4+i) −i·(1+i)2·(3+2i)·(4+i) (1+i)2·(3−2i)·(4−i) −i·(1+i)2·(3+2i)·(4−i) |
890 | 7+29i 19+23i 23+19i 29+7i |
i·(1+i)·(2−i)·(8−5i) (1+i)·(2−i)·(8+5i) (1+i)·(2+i)·(8−5i) −i·(1+i)·(2+i)·(8+5i) |
898 | 13+27i 27+13i |
(1+i)·(20+7i) (1+i)·(20−7i) |
900 | 18+24i 24+18i 30 |
−i·(1+i)2·(2+i)2·3 (1+i)2·(2−i)2·3 −i·(1+i)2·(2+i)·(2−i)·3 |
901 | 1+30i 15+26i 26+15i 30+i |
i·(4+i)·(7−2i) i·(4−i)·(7−2i) (4+i)·(7+2i) (4−i)·(7+2i) |
904 | 2+30i 30+2i |
−i·(1+i)3·(8+7i) −i·(1+i)3·(8−7i) |
905 | 8+29i 11+28i 28+11i 29+8i |
i·(2+i)·(10−9i) (2+i)·(10+9i) i·(2−i)·(10−9i) (2−i)·(10+9i) |
909 | 3+30i 30+3i |
i·3·(10−i) 3·(10+i) |
914 | 17+25i 25+17i |
(1+i)·(21+4i) (1+i)·(21−4i) |
916 | 4+30i 30+4i |
(1+i)2·(15−2i) −i·(1+i)2·(15+2i) |
922 | 9+29i 29+9i |
(1+i)·(19+10i) (1+i)·(19−10i) |
925 | 5+30i 14+27i 21+22i 22+21i 27+14i 30+5i |
i·(2+i)·(2−i)·(6−i) (2+i)2·(6+i) i·(2−i)2·(6+i) (2+i)2·(6−i) i·(2−i)2·(6−i) (2+i)·(2−i)·(6+i) |
928 | 12+28i 28+12i |
−(1+i)5·(5+2i) −(1+i)5·(5−2i) |
929 | 20+23i 23+20i |
(p) (p) |
932 | 16+26i 26+16i |
(1+i)2·(13−8i) −i·(1+i)2·(13+8i) |
936 | 6+30i 30+6i |
−i·(1+i)3·3·(3+2i) −i·(1+i)3·3·(3−2i) |
937 | 19+24i 24+19i |
(p) (p) |
941 | 10+29i 29+10i |
(p) (p) |
949 | 7+30i 18+25i 25+18i 30+7i |
i·(3−2i)·(8+3i) (3+2i)·(8+3i) i·(3−2i)·(8−3i) (3+2i)·(8−3i) |
953 | 13+28i 28+13i |
(p) (p) |
954 | 15+27i 27+15i |
(1+i)·3·(7+2i) (1+i)·3·(7−2i) |
961 | 31 | (p) |
962 | 1+31i 11+29i 29+11i 31+i |
(1+i)·(3+2i)·(6+i) (1+i)·(3+2i)·(6−i) (1+i)·(3−2i)·(6+i) (1+i)·(3−2i)·(6−i) |
964 | 8+30i 30+8i |
(1+i)2·(15−4i) −i·(1+i)2·(15+4i) |
965 | 2+31i 17+26i 26+17i 31+2i |
i·(2+i)·(12−7i) (2+i)·(12+7i) i·(2−i)·(12−7i) (2−i)·(12+7i) |
968 | 22+22i | −i·(1+i)3·11 |
970 | 3+31i 21+23i 23+21i 31+3i |
i·(1+i)·(2−i)·(9−4i) (1+i)·(2+i)·(9−4i) (1+i)·(2−i)·(9+4i) −i·(1+i)·(2+i)·(9+4i) |
976 | 20+24i 24+20i |
−i·(1+i)4·(6−5i) −(1+i)4·(6+5i) |
977 | 4+31i 31+4i |
(p) (p) |
980 | 14+28i 28+14i |
(1+i)2·(2−i)·7 −i·(1+i)2·(2+i)·7 |
981 | 9+30i 30+9i |
i·3·(10−3i) 3·(10+3i) |
985 | 12+29i 16+27i 27+16i 29+12i |
i·(2−i)·(14+i) i·(2−i)·(14−i) (2+i)·(14+i) (2+i)·(14−i) |
986 | 5+31i 19+25i 25+19i 31+5i |
(1+i)·(4+i)·(5+2i) (1+i)·(4−i)·(5+2i) (1+i)·(4+i)·(5−2i) (1+i)·(4−i)·(5−2i) |
997 | 6+31i 31+6i |
(p) (p) |
1000 | 10+30i 18+26i 26+18i 30+10i |
−i·(1+i)3·(2+i)2·(2−i) (1+i)3·(2−i)3 −(1+i)3·(2+i)3 −i·(1+i)3·(2+i)·(2−i)2 |
مراجع
- ^ "معلومات عن جدول تفكيك الأعداد الصحيحة الغاوسية على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2018-12-17.