هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

فضاء بوابة

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 12:38، 13 أبريل 2023 (بوت: إصلاح أخطاء فحص أرابيكا من 1 إلى 104). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

في الرياضيات، في مجال الطوبولوجيا، يقال أن الفضاء الطوبولوجي عبارة عن فضاء بوابة إذا كانت كل مجموعة جزئية مفتوحة أو مغلقة.[1] وهذا المصطلح مشتق من الأداة التذكيرية التقديمية المرتبطة بالطوبولوجيا والتي تشير إلى أن «المجموعة الجزئية ليست مثل الباب: حيث يمكن فتحها وغلقها أو فتحها وغلقها في نفس الوقت أو عدم فتحها أو غلقها في نفس الوقت».

وإليكم بعض الحقائق البسيطة حول فضاءات البوابات:

  • تحتوي بوابة فضاء هاوسدورف على الأقل على نقطة تجميع واحدة.
  • في فضاء بوابة هاوسدورف، إذا لم تكن "x" نقطة تجميع، فإن "{x}" تكون مفتوحة.

لإثبات التأكيد الثاني، لنفترض أن X هي فضاء بوابة هاوسدورف، وأن x ≠ y هي نقاط مميزة. وحيث أن X عبارة عن هاوسدورف، فإنه توجد مجاورات مفتوحة هي U وV لـ x وy على التوالي، بحيث يكون U∩V=∅. لنفترض أن y هي نقطة تجميع. تكون قيمة U\{x}∪{y} مغلقة، حيث أنها إن كانت مفتوحة، فإننا يمكن أن نقول إن قيمة {y}=(U\{x}∪{y})∩V مفتوحة، مما يتعارض مع كون y نقطة تجميع. وبالتالي فإننا نستنتج أنه طالما أن U\{x}∪{y} قيمة مغلقة، تكون X\(U\{x}∪{y}) قيمة مفتوحة، وبالتالي تكون قيمة {x}=U∩[X\(U\{x}∪{y})] مفتوحة، مما يعني أن x ليست نقطة تجميع.

ملاحظات

  1. ^ Kelley, ch.2, Exercise C, p. 76.

المراجع

  • Kelley، John L. (1991). General Topology. Springer. ISBN 3-540-90125-6.