توطئة بوريل

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 22:11، 27 يوليو 2023 (بوت:صيانة V5.9.3، أضاف وسم لا مصدر، أضاف وسم يتيمة). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)

في الرياضيات، توطئة بوريل هو نتيجة مهمة تستخدم في نظرية المفكوكات المقاربة [English] والمعادلات التفاضلية الجزئية. سميت هذه التوطئة على اسم العالم الفرنسي إميل بوريل.

النص

نفترض أن U هي مجموعة مفتوحة في الفضاء الإقليدي Rn، ونفترض أن f0 ، f1 ، ... هي متسلسلة الدوال الملساء على U.

إذا كانت I هي أي فترة مفتوحة من R تحوي 0 (ربما I = R)، فهناك دالة ملساء F(t, x) معرفة على I × U، بحيث:

kFtk|(0,x)=fk(x),

من أجل k ≥ 0 و x من U.

المراجع