مبرهنة طاليس (دائرة)

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 23:43، 5 يونيو 2023 (بوت: إصلاح أخطاء فحص أرابيكا من 1 إلى 104). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)

في الهندسة الرياضية، مبرهنة المثلث في الدائرة (يطلق عليها أيضا اسم مبرهنة طاليس) تنص على أنّه إذا كانت A و B و C نقاط على دائرة حيث AC قطر لهذه الدّائرة، فإن الزّاوية ABC تكون زاوية قائمة.[1][2][3]

اذا كان AC قطراً في الدائرة يكون المثلث ABC قائم في B.

التاريخ

التسمية

في بعض الدّول الأوروبية مثل فرنسا ترمز نظرية طالس لنظرية مغايرة لما تقدم. راجعها هنا، مبرهنة تالس. لا يجب الخلط بينها وبين مبرهنة طاليس للتناسب.

البرهان

 
رسم للبيان.

نستعمل الحقائق التّالية

لتكن O مركز الدّائرة. بما أنّ OA = OB = OC، فإن OAB وOBC مثلثان متساويا الضّلعين. وبما أنّ زاويتي القاعدة في مثلث متقايس الضّلعين متساويتان ينتج أن OBC = OCB، ABO = BAO.

لتكن BAO = α وOBC = β.

تكون الزوايا الدّاخلية في المثلث ABC هي α، β، α + β

  • بما أن مجموع زوايا مثلث يساوي مجموع زاويتين قائمتين، فإن :
    α+(α+β)+β=180

إذاً

2α+2β=180

إذاً

α+β=90

النظرية المعاكسة

تقول النظرية المعاكسة لطالس أن وتر مثلث قائم هو قطر الدائرة المحيطة به. عند الدمج بين النظريتين نحصّل على

  • مركز الدّائرة المحيطة لمثلث يوجد على واحد من أضلع المثلّث يعني المثلث قائم.

انظر أيضا

روابط خارجيّة

-*Munching on Inscribed Angles*Thales' theorem explained With interactive animation


مراجع

  1. ^ Heath، Thomas L. (1956). The thirteen books of Euclid's elements. New York, NY [u.a.]: Dover Publ. ص. 61. ISBN:0486600890. مؤرشف من الأصل في 2019-12-15.
  2. ^ Patronis، T.؛ Patsopoulos، D. The Theorem of Thales: A Study of the naming of theorems in school Geometry textbooks. جامعة باتراس. مؤرشف من الأصل في 2018-10-09. اطلع عليه بتاريخ 2012-02-12.
  3. ^ Resources for Teaching Mathematics: 14–16 Colin Foster نسخة محفوظة 8 مارس 2020 على موقع واي باك مشين.