English: A plot showing how the ratio test test is proven in the convergent case. Given a sequence like the blue one, for which the ratio of adjacent terms converges to L < 1, we identify a ratio r = (L+1)/2 and show that for large enough n the sequence is dominated by the simple geometric sequence rk. In this case the ratio of adjacent terms of the blue sequence converges to L=1/2, so we choose r=3/4, and rk dominates for all n ≥ 2. Source used to generate this chart is shown below.
لقد وَضَعَ صاحب حقوق التَّأليف والنَّشر هذا العملَ في النَّطاق العامّ من خلال تنازُلِه عن حقوق العمل كُلِّها في أنحاء العالم جميعها تحت قانون حقوق التَّأليف والنَّشر، ويشمل ذلك الحقوق المُتَّصِلة بها والمُجاورة لها برمتها بما يتوافق مع ما يُحدده القانون. يمكنك نسخ وتعديل وتوزيع وإعادة إِنتاج العمل، بما في ذلك لأغراضٍ تجاريَّةٍ، دون حاجةٍ لطلب مُوافَقة صاحب حقوق العمل.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse
Source
All source released under CC0 waiver.
Mathematica source to generate graph (which was then saved as SVG from Mathematica):
These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif and the legend was added in Inkscape.
== {{int:filedesc}} == {{Information |Description ={{en|1=A plot showing how the en:ratio test test is proven in the convergent case. Given a sequence like the blue one, for which the ratio of adjacent terms <math>|a_{n+1}/a_n|</math> converge...