معادلة فانت هوف

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 22:22، 13 ديسمبر 2023 (توثيق التسمية). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

معادلة فانت هوف[1] في الديناميكا الحرارية الكيميائية تربط التغير في درجة الحرارة (T) بالتغيير في ثابت الاتزان  (k) معطية التغير في المحتوى الحراري القياسي (ΔH) للنظام.[2] اشتق المعادلة للمرة الأولى العالم  ياكوبس فانت هوف.

dlnKdT=ΔHRT2

يمكن كتابتة بالصيغة التالية أيضا

dlnKeqd1T=ΔHR.

إذا افترضنا ان التغير في المحتوى الحراري للتفاعل يعتبر كثابت مع درجة الحرارة فان التكامل المحدود للمعادلة التفاضلية في المعادلة ا1 وT2 يعطى بالمعادلة التالية

ln(K2K1)=ΔHR(1T11T2)

في هذه المعادلة (K(1 هو ثابت الاتزان في درجة الحرارة المطلقة T1 وK2 هو ثابت التوازن في درجة الحرارة المطلقةT2. وΔH هو التغير في المحتوى الحراري القياسي و R هو ثابت الغاز.

وحيث

ΔG=ΔHTΔS

و

ΔG=RTlnK

ويترتب على هذا

lnK=ΔHRT+ΔSR

ولذلك، نضع  اللوغاريتم الطبيعي لثابت توازن مقابل درجة الحرارة يعطي خط مستقيم. والميل للخط يساوي سالب التغير في المحتوى الحراري-ΔH القياسي مقسوماً على ثابت الغاز، -ΔH/R والتقاطع مساو للتغيير في الانتروبي القياسي مقسوماً على ثابت الغاز، ΔS/R. تفاضل هذه المعادلة الجبرية تعطي معادلة فانت هوف

مراجع

  1. ^ Q113378673، ص. 567، QID:Q113378673
  2. ^ "معلومات عن معادلة فانت هوف على موقع krugosvet.ru". krugosvet.ru. مؤرشف من الأصل في 2023-02-01.